ISSN 1600-5368

Xiang-Shan Wang,^{a,b}* Zhao-Sen Zeng,^a Yu-Ling Li,^a Da-Qing Shi,^a Xian-Yong Wei^b and Zhi-Min Zong^b

^aDepartment of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ^bSchool of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, People's Republic of China

Correspondence e-mail: xswang1974@yahoo.com

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.098 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 3-amino-1-(2-chlorophenyl)-9-methoxy-

5,6-dihydro-1*H*-naphtho[2,1-*b*]pyran-2-carboxylate

The title compound, $C_{22}H_{20}CINO_4$, was synthesized by the reaction of methyl 3-(2-chlorophenyl)-2-cyanoacrylate and 7-methoxy-1,2,3,4-tetrahydronaphthalen-2-one in ethanol catalyzed by KF–alumina. X-ray analysis reveals that the pyran ring adopts a half-chair conformation, while the cyclohexene ring bonded to the pyran moiety has a skewboat form.

Received 1 March 2005 Accepted 3 March 2005 Online 11 March 2005

Comment

2-Aminochromenes are an important class of compounds, found as the main compounds in many naturally occurring products employed as cosmetics and pigments and utilized as potential biodegradable agrochemicals (Morinaka & Takahashi, 1977; Witte, *et al.*, 1986; Hafez *et al.*, 1987). The utility of fluoride salts as a potential base in a variety of synthetic reactions has been recognized in recent years. In particular, alumina coated with potassium fluoride (KF–alumina) has been reported as a useful catalyst for many reactions (Clark, 1980), resulting in higher selectivity, milder reaction conditions and easier work-up. We report here the X-ray crystal structure of the title compound, (I).

In (I), the pyran ring is slightly distorted and adopts a halfchair conformation (Fig. 1). Atom C11 deviates from the plane defined by the atoms C1/C10/C12/C13/O1 by 0.153 (2) Å. A similar distortion was observed in 9-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-enyl)-3,3,7-trimethyl-1,2,3,4-hexahydro-9*H*xanthen-1-one (Li *et al.*, 2004). The six-membered ring C1–C4/ C9/C10 adopts a skew-boat conformation. Atoms C2/C1/C10/ C9 and C3/C4/C9/C10 are coplanar, respectively, and the C1– C10–C9–C4 torsion angle is –16.9 (3)°. Atoms C1 and C2 deviate from the plane through C3/C4/C9/C10 by 0.391 (2) and 0.781 (2) Å, respectively. A similar conformation was observed in the partially saturated six-membered ring in 2-amino-4-phenyl-5,6-dihydro-benzo[*h*]quinazolin-1-one (Wang, Shi *et al.*, 2003) and 2-amino-3-cyano-4-(4-methoxy-

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The molecular packing of (I). H atoms have been omitted, except for those of the amino group. Broken lines indicate hydrogen bonds.

phenyl)-1,4,5,6-tetrahydrobenzo[h]chromene (Wang, Li *et al.*, 2003). The 2-Cl-phenyl ring is approximately perpendicular to the tricyclic ring system.

There are intra- and intermolecular $N-H\cdots O$ hydrogen bonds in the crystal structure of (I) (Table 2), forming polymeric chains along the *b* axis (Fig. 2). N-H1A is involved in both of these interactions, while N-H1B does not have a hydrogen-bond acceptor.

Experimental

Compound (I) was prepared by the reaction of methyl 3-(2-chlorophenyl)-2-cyanoacrylate (0.42 g, 2 mmol) and 7-methoxy-1,2,3,4-tetrahydronaphthalene-2-one (0.35 g, 2 mmol) in the presence of KF-alumina (0.25 g) in ethanol at 293 K for 8 h (yield 78%, m.p. 448-449 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Elemental analysis, calculated: C 66.42, H 5.07, N 3.52%; found: C 66.31, H 5.05, N 5.43%. Spectroscopic analysis: ¹H NMR (CDCl₃, δ , p.p.m.): 2.51–2.55 (*m*, 2H, CH₂), 2.76–2.81 (*m*, 2H, CH₂), 3.65 (*s*, 3H, CH₃O), 3.80 (*s*, 3H, CH₃O), 5.26 (*s*, 1H, CH), 6.20 (*s*, 2H, NH₂), 6.58 (*dd*, *J* = 8.0 Hz, *J'* = 2.4 Hz, 1H, ArH), 7.10 (*d*, *J* = 2.4 Hz, 1H, ArH), 7.13 (*d*, *J* = 7.2 Hz, 1H, ArH), 7.22 (*d*, *J* = 7.6 Hz, 1H, ArH), 7.36 (*dd*, *J* = 7.6 Hz, 1H, ArH), 7.16 (KBr, ν , cm⁻¹): 3398, 3296 (NH₂), 2942, 2837 (C–H), 1695 (C=O), 1603, 1574, 1518 (phenyl ring).

Crystal data

C22H20CINO4
$M_r = 397.84$
Monoclinic, $P2_1/c$
a = 8.043 (1) Å
b = 11.877(1) Å
c = 20.233 (3) Å
$\beta = 99.40 \ (1)^{\circ}$
$V = 1906.8 (4) \text{ Å}^3$
$\mathbf{Z} = 4$

Data collection

Siemens *P*4 diffractometer ω scans Absorption correction: none 4063 measured reflections 3454 independent reflections 2135 reflections with $I > 2\sigma(I)$ $R_{int} = 0.008$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0525P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	where $P = (F_0^2 + 2F_c^2)/3$
$vR(F^2) = 0.098$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.87	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
3454 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ \AA}^{-3}$
257 parameters	Extinction correction: SHELXTL
H-atom parameters constrained	(Sheldrick, 1997)
	Extinction coefficient: 0.0039 (6)

 $D_x = 1.386 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 37 reflections $\theta = 3.0-13.7^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 273 (2) K

Block, yellow $0.52 \times 0.40 \times 0.40 \text{ mm}$

 $\theta_{\rm max} = 25.3^{\circ}$

 $k = 0 \rightarrow 14$

 $l = -24 \rightarrow 23$

3 standard reflections

every 97 reflections

intensity decay: 2.7%

 $h = 0 \rightarrow 9$

Table 1

Selected geometric parameters (Å, °).

O1-C13	1.355 (2)	C10-C11	1.516 (3)
O1-C1	1.392 (2)	C11-C12	1.528 (3)
C1-C10	1.328 (3)	C12-C13	1.354 (3)
C13 - O1 - C1	118.13 (16)	C10-C11-C12	110.36 (16)
C10-C1-O1	124.18 (19)	C13-C12-C11	121.19 (18)
C1-C10-C11	121.39 (18)	C12-C13-O1	123.65 (18)
$C_{13} = O_{1} = C_{1} = C_{10}$	47(3)	$C_{8} = C_{9} = C_{10} = C_{1}$	163 24 (19)
$C_{1}^{1} C_{2}^{2} C_{3}^{2} C_{4}^{4}$	-471(2)	$C_{1}^{0} = C_{1}^{0} = C_{1}^{0} = C_{1}^{0}$	-160(3)
$C_1 - C_2 - C_3 - C_4$	-47.1(2)	$C_{1} = C_{10} = C_{10} = C_{11}$	-10.9(3)
$C_2 - C_3 - C_4 - C_5$	21(2)	$C_{10}^{10} = C_{11}^{11} = C_{12}^{12} = C_{12}^{12}$	10.0(3)
C3-C4-C9-C10	-5.1 (5)		11.2 (5)
$C_2 - C_1 - C_{10} - C_9$	1.2 (3)	CII - CI2 - CI3 - OI	-5.2(3)
01-C1-C10-C11	2.7 (3)	C1-O1-C13-C12	-3.3 (3)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N-H1A\cdots O3$	0.86	2.07	2.684 (3)	127
$N-H1A\cdots O4^{i}$	0.86	2.56	3.007 (2)	113

Symmetry codes: (i) x, y - 1, z.

The H atoms were positioned geometrically and refined as riding, with C—H distances in the range 0.91–0.98 Å and N—H distances of 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 1997); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation (grant No. 04 KJB150139) of the Education Committee of Jiangsu Province for financial support.

References

- Clark, J. H. (1980). Chem. Rev. 80, 429-452.
- Hafez, E. A., Elnagdi, M. H., Elagamey, A. A. & El-Taweel, F. A. (1987). *Heterocycles*, 26, 903–907.
- Li, Y. L., Wang, X. S., Shi, D. Q., Tu, S. J. & Zhang, Y. (2004). Acta Cryst. E60, 01439–01441.
- Morinaka, Y. & Takahashi, K. (1977). Jpn Pat. 52 017 498.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1994). XSCANS. Version 2.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, X. S., Li, Y. L., Shi, D. Q. & Tu, S. J. (2003). Acta Cryst. E59, o1210o1212.
- Wang, X. S., Shi, D. Q., Tu, S. J. & Yu, K. B. (2003). *Acta Cryst.* E**59**, 0423–0424. Witte, E. C., Neuert, P. & Roesch, A. (1986). Ger. Offen. DE 3 427 985.